21 research outputs found

    AAindex: amino acid index database, progress report 2008

    Get PDF
    AAindex is a database of numerical indices representing various physicochemical and biochemical properties of amino acids and pairs of amino acids. We have added a collection of protein contact potentials to the AAindex as a new section. Accordingly AAindex consists of three sections now: AAindex1 for the amino acid index of 20 numerical values, AAindex2 for the amino acid substitution matrix and AAindex3 for the statistical protein contact potentials. All data are derived from published literature. The database can be accessed through the DBGET/LinkDB system at GenomeNet (http://www.genome.jp/dbget-bin/www_bfind?aaindex) or downloaded by anonymous FTP (ftp://ftp.genome.jp/pub/db/community/aaindex/)

    On consensus biomarker selection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent development of mass spectrometry technology enabled the analysis of complex peptide mixtures. A lot of effort is currently devoted to the identification of biomarkers in human body fluids like serum or plasma, based on which new diagnostic tests for different diseases could be constructed. Various biomarker selection procedures have been exploited in recent studies. It has been noted that they often lead to different biomarker lists and as a consequence, the patient classification may also vary.</p> <p>Results</p> <p>Here we propose a new approach to the biomarker selection problem: to apply several competing feature ranking procedures and compute a consensus list of features based on their outcomes. We validate our methods on two proteomic datasets for the diagnosis of ovarian and prostate cancer.</p> <p>Conclusion</p> <p>The proposed methodology can improve the classification results and at the same time provide a unified biomarker list for further biological examinations and interpretation.</p

    New statistical potential for quality assessment of protein models and a survey of energy functions

    Get PDF
    Abstract Background Scoring functions, such as molecular mechanic forcefields and statistical potentials are fundamentally important tools in protein structure modeling and quality assessment. Results The performances of a number of publicly available scoring functions are compared with a statistical rigor, with an emphasis on knowledge-based potentials. We explored the effect on accuracy of alternative choices for representing interaction center types and other features of scoring functions, such as using information on solvent accessibility, on torsion angles, accounting for secondary structure preferences and side chain orientation. Partially based on the observations made, we present a novel residue based statistical potential, which employs a shuffled reference state definition and takes into account the mutual orientation of residue side chains. Atom- and residue-level statistical potentials and Linux executables to calculate the energy of a given protein proposed in this work can be downloaded from http://www.fiserlab.org/potentials. Conclusions Among the most influential terms we observed a critical role of a proper reference state definition and the benefits of including information about the microenvironment of interaction centers. Molecular mechanical potentials were also tested and found to be over-sensitive to small local imperfections in a structure, requiring unfeasible long energy relaxation before energy scores started to correlate with model quality.</p

    Nature of protein family signatures: Insights from singular value analysis of position-specific scoring matrices

    Get PDF
    Position-specific scoring matrices (PSSMs) are useful for detecting weak homology in protein sequence analysis, and they are thought to contain some essential signatures of the protein families. In order to elucidate what kind of ingredients constitute such family-specific signatures, we apply singular value decomposition to a set of PSSMs and examine the properties of dominant right and left singular vectors. The first right singular vectors were correlated with various amino acid indices including relative mutability, amino acid composition in protein interior, hydropathy, or turn propensity, depending on proteins. A significant correlation between the first left singular vector and a measure of site conservation was observed. It is shown that the contribution of the first singular component to the PSSMs act to disfavor potentially but falsely functionally important residues at conserved sites. The second right singular vectors were highly correlated with hydrophobicity scales, and the corresponding left singular vectors with contact numbers of protein structures. It is suggested that sequence alignment with a PSSM is essentially equivalent to threading supplemented with functional information. The presented method may be used to separate functionally important sites from structurally important ones, and thus it may be a useful tool for predicting protein functions.Comment: 22 pages, 7 figures, 4 table

    Journal of Applied Analysis Vol. 4, No. 2 (1998), pp. 259–267 UNCOUPLING MEASURES AND EIGENVALUES OF STOCHASTIC MATRICES

    No full text
    Abstract. This paper gives bounds for the uncoupling measures of a stochastic matrix P in terms of its eigenvalues. The proofs are combinatorial. We use the Matrix–Tree Theorem which represents principal minors of I − P as sums of weights of directed forests. 1. Introduction an
    corecore